DS de mathématiques n°1

Logique, ensembles – Corrigé

Noté sur 115 pts ± 5 pts pour le soin et la clarté, puis la note est ramené sur 20 en multipliant par 21/100.

/18 Exercice 1 : Raisonnements

Les questions de cet exercice sont indépendantes.

1) On considère l'assertion suivante :

 $P: \quad \forall x \in \mathbb{R} \quad \forall n \in \mathbb{N} \qquad x\sqrt{n} \notin \mathbb{Q} \implies x \text{ n'est pas un entier ou } n \geq 2$

/1,5 a) Écrire la négation de P.

 $\operatorname{non} P: \qquad \exists x \in \mathbb{R} \quad \exists n \in \mathbb{N} \qquad x \sqrt{n} \notin \mathbb{Q} \text{ et } \operatorname{non} \left(x \text{ n'est pas un entier ou } n \geq 2\right)$

donc

/3

non P: $\exists x \in \mathbb{R} \ \exists n \in \mathbb{N}$ $x\sqrt{n} \notin \mathbb{Q}$ et x est un entier et n < 2

b) En utilisant la contraposée, écrire une assertion Q qui est équivalente à P. En déduire (avec justification) si P est vraie ou fausse.

 $(1.5 \ point \ pour \ trouver \ Q, \ 1.5 \ point \ pour \ la \ preuve)$

Par la contraposée P équivaut à :

 $Q: \quad \forall x \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad \text{non} (x \text{ n'est pas un entier ou } n \geq 2) \implies x\sqrt{n} \in \mathbb{Q}$

ou encore :

 $Q: \quad \forall x \in \mathbb{R} \quad \forall n \in \mathbb{N} \quad (x \text{ est un entier et } n < 2) \implies x\sqrt{n} \in \mathbb{Q}$

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. On suppose $x \in \mathbb{Z}$ et n < 2. Comme $n \in \mathbb{N}$, on a $n \leq 1$, donc $n \in \{0,1\}$. En particulier, $\sqrt{n} = n$. Ainsi, $x\sqrt{n} = xn$ est un produit d'entiers. Donc $xn \in \mathbb{Z}$. En particulier, $xn \in \mathbb{Q}$.

2) Soit $q \in \mathbb{Q}$ et $r \in \mathbb{R} \setminus \mathbb{Q}$.

/1,5

/4

/8

a) Donner une écriture de $\mathbb Q$ en tant qu'ensemble paramétré. Que peut-on en déduire sur $q\,?$

 $\mathbb{Q} = \left\{ \frac{a}{b} \;\middle|\; a \in \mathbb{Z}, \quad b \in \mathbb{Z}^* \right\} \quad \text{(on peut aussi prendre b dans \mathbb{N}^*)}$

En particulier, comme $q \in \mathbb{Q}$, alors on peut écrire $q = \frac{a}{b}$ avec $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$.

b) En raisonnant par l'absurde, montrer que $r + q \notin \mathbb{Q}$.

On suppose par l'absurde que $r + q \in \mathbb{Q}$. Alors

$$r + q = \frac{c}{d}$$
 avec $c \in \mathbb{Z}$, $d \in \mathbb{Z}^*$

De plus, on a vu en question précédente que $q=\frac{a}{b}$ avec $a\in\mathbb{Z}$ et $b\in\mathbb{Z}^*.$ On a donc

$$r = \frac{c}{d} - q = \frac{c}{d} - \frac{a}{b}$$
$$= \frac{bc - ad}{bd}$$

Or, $bc - ad \in \mathbb{Z}$ et $bd \in \mathbb{Z}^*$. Ainsi, $r \in \mathbb{Q}$. Contradiction car $r \in \mathbb{R} \setminus \mathbb{Q}$

3) On considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par $u_1=u_2=1$ et

$$\forall n \in \mathbb{N}^* \qquad u_{n+2} = u_{n+1} + \frac{2}{n+2} u_n$$

Montrer que : $\forall n \in \mathbb{N}^* \quad 1 \le u_n \le n^2$

(2,5 points pour l'idée et la rédaction de la récurrence double, 1 point pour l'initialisation et 4,5 points pour l'hérédité)

On raisonne par récurrence double.

- Pour n = 1, on a $u_1 = 1$ donc $1 \le u_1 \le 1^2$. Pour n = 2, on a $u_2 = 1$, donc $1 \le u_2 \le 2^2$. La propriété est donc vérifiée pour les rangs 1 et 2.
- Soit $n \in \mathbb{N}^*$. On suppose que $1 \le u_n \le n^2$ et $1 \le u_{n+1} \le (n+1)^2$. Montrons que $1 \le u_{n+2} \le (n+2)^2$. Comme $u_n \ge 0$, on a

$$u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n \ge u_{n+1} \ge 1$$

Ainsi, on a déjà $1 \le u_{n+2}$. Montrons que $u_{n+2} \le (n+2)^2$.

$$u_{n+2} = u_{n+1} + \frac{2}{n+2}u_n$$

$$\leq (n+1)^2 + \frac{2}{n+2}n^2$$

Il suffit donc de montrer que

$$(n+1)^2 + \frac{2}{n+2}n^2 \le (n+2)^2$$

$$\iff \frac{2}{n+2}n^2 \le (n+2)^2 - (n+1)^2$$

$$\iff \frac{2}{n+2}n^2 \le (n+2-(n+1)) \times (n+2+n+1)$$

$$\iff \frac{2}{n+2}n^2 \le 2n+3$$

$$\iff 2n^2 \le (n+2)(2n+3)$$

$$\iff 2n^2 \le 2n^2 + 4n + 3n + 6$$

$$\iff 0 < 7n + 6$$

Cette dernière assertion est vraie, donc on a bien $u_{n+2} \leq (n+2)^2$. L'assertion est donc vérifiée au rang n+2.

Finalement, on a bien $\forall n \in \mathbb{N}^* \quad 1 \leq u_n \leq n^2$.

$^{\prime}$ 43 Exercice-Problème 2: Une équation fonctionnelle dans $\mathbb N$

Soit f une application de $\mathbb N$ dans $\mathbb N$ telle que :

$$\forall (m,n) \in \mathbb{N}^2 \quad f(m^2 + n^2) = f(m)^2 + f(n)^2$$

L'objectif de cet exercice est de prouver que les **seules** solutions de cette équation fonctionnelle sont :

- L'application nulle, donnée par : $\forall n \in \mathbb{N} \quad f(n) = 0$
- L'application identité, donnée par : $\forall n \in \mathbb{N} \quad f(n) = n$

On notera que ces deux fonctions sont bien des solutions, et ce de façon évidente. Dans la suite de l'exercice, on considère f une fonction solution quelconque et on note a l'entier naturel f(1).

1) Montrer que f(0) = 0.

G. Peltier – MPSI, Lycée Alain Fournier

On pose m = n = 0. L'équation donne alors

$$f(0^2 + 0^2) = f(0)^2 + f(0)^2$$

ou encore $f(0)=2f(0)^2$. On pose x=f(0), de sorte que $2x^2-x=0$. Cela se réécrit x(2x-1)=0. On en déduit que x=0 ou $x=\frac{1}{2}$. Or, $x=f(0)\in\mathbb{N}$ par hypothèse, donc nécessairement $x=f(0)=\boxed{0}$.

/1 2) En déduire que pour tout n dans \mathbb{N} , on a $f(n^2) = f(n)^2$.

On pose m=0. En premant l'équation pour $n\in\mathbb{N}$ quelconque, on a

$$f(0^2 + n^2) = f(0)^2 + f(n)^2$$

ou encore, puisque f(0) = 0,

$$f(n^2) = f(n)^2$$

/1,5 3) En déduire que a est égal à 0 ou à 1.

En utilisant la question précédente avec n = 1, on obtient $f(1) = f(1)^2$, i.e. $a = a^2$. De cela, on obtient que $a^2 - a = 0$, i.e. a(a - 1) = 0. Ainsi a = 0 ou a = 1

- 4) Dans cette question, on souhaite montrer que pour tout entier naturel n, on a f(n) = an. On notera que l'égalité est déjà vérifiée pour n = 0 et n = 1.
- /4,5 a) Vérifier successivement les égalités f(2) = 2a, f(4) = 4a, et f(5) = 5a.

$$f(2) = f(1^{2} + 1^{2})$$

$$= f(1)^{2} + f(1)^{2}$$

$$= a^{2} + a^{2}$$

$$= a + a$$

$$= 2a$$

$$f(4) = f(0^{2} + 2^{2})$$

$$= f(0)^{2} + f(2)^{2}$$

$$= 0 + (2a)^{2}$$

$$= 4a^{2}$$

$$= 4a^{2}$$

$$= 4a^{2}$$

$$= 5a^{2}$$

$$= 5a$$

/4 **b)** Utiliser les valeurs de f(4) et de f(5) pour montrer que f(3) = 3a.

3/12

Comme $3^2 + 4^2 = 5^2$ on a

$$f(3^{2} + 4^{2}) = f(5^{2})$$

$$\Rightarrow f(3)^{2} + f(4)^{2} = f(5)^{2}$$

$$\Rightarrow f(3)^{2} = (5a)^{2} - (4a)^{2}$$

$$\Rightarrow f(3)^{2} = 9a^{2}$$

$$\Rightarrow |f(3)| = 3|a|$$

$$\Rightarrow f(3) = 3a$$

car f(3) et a sont tous deux positifs.

c) Utiliser les valeurs de f(1) et de f(5) pour montrer que f(7) = 7a.

Comme $5^2 + 5^2 = 1^2 + 7^2$ on a

/4

/9

$$f(5^{2} + 5^{2}) = f(1^{2} + 7^{2})$$

$$\implies f(5)^{2} + f(5)^{2} = f(1)^{2} + f(7)^{2}$$

$$\implies f(7)^{2} = (5a)^{2} + (5a)^{2} - a^{2}$$

$$\implies f(7)^{2} = 49a^{2}$$

$$\implies \boxed{f(7) = 7a}$$

car f(7) et a sont tous deux positifs.

d) Par un calcul rapide et sans justifier de manière précise, montrer que f(8) = 8a, f(9) = 9a, f(10) = 10a et f(6) = 6a.

(1.5 points fois 3 pour f(8), f(9) et f(10), puis 4.5 points pour f(6)).

$$f(8) = f(2^{2} + 2^{2}) = f(2)^{2} + f(2)^{2}$$

$$= (2a)^{2} + (2a)^{2} = 8a^{2} = 8a$$

$$f(9) = f(3^{2}) = f(3)^{2} = (3a)^{2} = 9a^{2} = 9a$$

$$f(10) = f(3^{2} + 1^{2}) = f(3)^{2} + f(1)^{2}$$

$$= (3a)^{2} + a^{2} = 10a^{2} = 10a$$

$$f(6^{2} + 8^{2}) = f(10^{2})$$

$$\Rightarrow f(6)^{2} + f(8)^{2} = (10a)^{2}$$

$$\Rightarrow f(6)^{2} = (10a)^{2} - (8a)^{2}$$

$$\Rightarrow f(6)^{2} = 36a^{2}$$

$$\Rightarrow f(6) = \boxed{6a}$$

On admet que pour tout entier k on a :

/15

$$\begin{cases} (2k)^2 + (k-5)^2 = (2k-4)^2 + (k+3)^2 \\ (2k+1)^2 + (k-2)^2 = (2k-1)^2 + (k+2)^2 \end{cases}$$

e) Montrer par récurrence forte que pour tout $n \in \mathbb{N}$, on a f(n) = an. On notera que l'initialisation a déjà été faite pour n allant de 0 à 10. L'hérédité consistera donc à montrer que f(n) = an à partir de n = 11.

On raisonne par récurrence forte.

- Pour n allant de 0 à 10, on a déjà montré que f(n) = an dans les questions précédentes.
- Soit $n \ge 11$. On suppose que pour tout $N \in [0, n-1]$, on a f(N) = aN. Montrons que f(n) = an.
 - \star Si n est pair, alors on peut l'écrire n=2k avec $k \in \mathbb{N}$. Comme $n \geq 12$, on a automatiquement $k \geq 6$. En particulier, k-5 et 2k-4 sont des entiers naturels, ce qui permet d'écrire :

$$f((2k)^{2} + (k-5)^{2}) = f((2k-4)^{2} + (k+3)^{2})$$

$$\implies f(2k)^{2} + f(k-5)^{2} = f(2k-4)^{2} + f(k+3)^{2}$$

De plus, on a $k-5 \le 2k-1 = n-1$ donc par hypothèse de récurrence, on a f(k-5) = (k-5)a. De même f(2k-4) = (2k-4)a. Enfin, comme $k \ge 6$, on a $2k \ge 6+k$ et donc $k+3 \le 2k-3 \le n-1$, donc là encore par hypothèse de récurrence, f(k+3) = (k+3)a. On a donc :

$$f(2k)^{2} + f(k-5)^{2} = f(2k-4)^{2} + f(k+3)^{2}$$

$$\implies f(2k)^{2} + (k-5)^{2}a^{2} = (2k-4)^{2}a^{2} + (k+3)^{2}a^{2}$$

$$\implies f(2k)^{2} = \left[(2k-4)^{2} + (k+3)^{2} - (k-5)^{2} \right]a^{2}$$

$$\implies f(2k)^{2} = (2k)^{2}a^{2}$$

$$\implies f(2k) = (2k)a$$

car f(2k), 2k et a sont positifs. Ainsi, on a f(n) = an dans ce cas. * Si n est impair, alors on peut l'écrire n = 2k + 1 avec $k \in \mathbb{N}$. Comme $n \ge 11$, on a automatiquement $k \ge 5$. En particulier, k - 2 et 2k - 1 sont des entiers naturels, ce qui permet d'écrire :

$$f[(2k+1)^2 + (k-2)^2] = f[(2k-1)^2 + (k+2)^2]$$

$$\implies f(2k+1)^2 + f(k-2)^2 = f(2k-1)^2 + f(k+2)^2$$

Or, $k-2 \le 2k = n-1$ donc f(k-2) = (k-2)a par hypothèse de récurrence. De même, on a f(2k-1) = (2k-1)a. Enfin, comme $k \ge 5$, on a $2k \ge 5 + k$, de sorte que $k+2 \le 2k-3 \le n-1$, donc là encore par hypothèse de récurrence, on a f(k+2) = (k+2)a. On a donc :

$$f(2k+1)^{2} + f(k-2)^{2} = f(2k-1)^{2} + f(k+2)^{2}$$

$$\implies f(2k+1)^{2} + (k-2)^{2}a^{2} = (2k-1)^{2}a^{2} + (k+2)^{2}a^{2}$$

$$\implies f(2k+1)^{2} = \left[(2k-1)^{2} + (k+2)^{2} - (k-2)^{2} \right]a^{2}$$

$$\implies f(2k+1)^{2} = (2k+1)^{2}a^{2}$$

$$\implies f(2k+1) = (2k+1)a$$

car f(2k+1), 2k+1 et a sont positifs. Ainsi, on a f(n) = an dans ce cas.

Finalement, on a bien montré que f(n) = an dans tous les cas. On en conclut que pour tout $n \in \mathbb{N}$, on a f(n) = an.

2 5) Conclure en précisant le raisonnement utilisé.

(0,75 point pour "analyse-synthèse", 0,75 point pour donner l'ensemble des solutions, 0,5 point pour préciser ce qui tient lieu d'analyse et ce qui tient lieu de synthèse).

On raisonne par analyse-synthèse.

- Analyse: étant donné f une fonction solution, par la question précédente on sait que pour tout $n \in \mathbb{N}$ on a f(n) = an, et par la question 3), on sait que a = 0 ou a = 1. Si a = 0, on obtient que f est la fonction nulle. Si a = 1, on obtient que f est la fonction identité.
- Synthèse : réciproquement, comme vu dans l'énoncé, ces deux fonctions vérifient trivialement l'équation.

Ainsi (avec N l'ensemble de départ des fonctions ci-dessous) :

$$\mathcal{S} = \{ n \mapsto 0, \quad n \mapsto n \}$$

/54 Exercice-Problème 3 : La différence symétrique

Soit A et B deux sous-ensembles d'un même ensemble E, on appelle **différence** symétrique de A et B l'ensemble noté $A\Delta B$ que l'on définit par :

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$

On note par ailleurs $A\Delta'B$ l'ensemble :

$$A\Delta'B = (A \setminus B) \cup (B \setminus A)$$

Enfin, pour tout sous-ensemble X de E, on notera \overline{X} son complémentaire dans E

(2 1) Soit C et D deux sous-ensembles de E. Montrer que $C \setminus D = C \cap \overline{D}$.

Soit $x \in E$.

$$\begin{aligned} x \in C \setminus D &\iff x \in C \text{ et } x \notin D \\ &\iff x \in C \text{ et } x \in \overline{D} \\ &\iff x \in C \cap \overline{D} \end{aligned}$$

D'où
$$C \setminus D = C \cap \overline{D}$$
.

2) En déduire une nouvelle expression de $A\Delta B$ et de $A\Delta' B$ avec uniquement des opérations d'unions, d'intersections, et de passages au complémentaire.

(+1 point si vous avez utilisé la loi de Morgan) On a

$$A\Delta B = (A \cup B) \setminus (A \cap B)$$
$$= (A \cup B) \cap \overline{A \cap B}$$

et

$$A\Delta'B = (A \setminus B) \cup (B \setminus A)$$
$$= (A \cap \overline{B}) \cup (B \cap \overline{A})$$

 $(dont\ 1\ point\ pour\ la\ loi\ de\ Morgan,\ si\ et\ seulement\ si\ vous\ ne\ l'avez\ pas\ utilisée\ avant)$

Par la question précédente :

$$\begin{split} A\Delta B = & (A \cup B) \cap (\overline{A \cap B}) \\ = & (A \cup B) \cap (\overline{A} \cup \overline{B}) \\ = & [(A \cup B) \cap \overline{A}] \cup [(A \cup B) \cap \overline{B}] \\ = & [(A \cap \overline{A}) \cup (B \cap \overline{A})] \cup [(A \cap \overline{B}) \cup (B \cap \overline{B})] \\ = & (B \cap \overline{A}) \cup (A \cap \overline{B}) \\ = & A\Delta'B \end{split}$$

(On pouvait également faire un raisonnement par double inclusion, mais c'est assez long)

Ainsi, $A\Delta'B$ n'est qu'une expression alternative de la différence symétrique de A et de B. Dans la suite, on se contentera d'appeler $A\Delta B$ cet ensemble.

4) Montrer que l'intersection est distributive par rapport à la différence symétrique, c'est-à-dire montrer que :

$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$

On a:

/8

$$A \cap (B \Delta C) = A \cap \left[\left(B \cap \overline{C} \right) \cup \left(\overline{B} \cap C \right) \right]$$
$$= \left[A \cap \left(B \cap \overline{C} \right) \right] \cup \left[A \cap \left(\overline{B} \cap C \right) \right]$$
$$= \left(A \cap B \cap \overline{C} \right) \cup \left(A \cap \overline{B} \cap C \right)$$

$$(A \cap B)\Delta(A \cap C) = \left[(A \cap B) \cap \overline{A \cap C} \right] \cup \left[\overline{A \cap B} \cap (A \cap C) \right]$$

$$= \left[(A \cap B) \cap (\overline{A} \cup \overline{C}) \right] \cup \left[(\overline{A} \cup \overline{B}) \cap (A \cap C) \right]$$

$$= \left[(A \cap B \cap \overline{A}) \cup (A \cap B \cap \overline{C}) \right]$$

$$\cup \left[(\overline{A} \cap A \cap C) \cup (\overline{B} \cap A \cap C) \right]$$

$$= \left[\varnothing \cup (A \cap B \cap \overline{C}) \right] \cup \left[\varnothing \cup (\overline{B} \cap A \cap C) \right]$$

$$= \left(A \cap B \cap \overline{C} \right) \cup \left(A \cap \overline{B} \cap C \right)$$

Ainsi, on a bien $A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$.

5) Montrer que:

$$A\Delta B = A\Delta C \implies B = C$$

/10

/5

On suppose $A\Delta B = A\Delta C$. Montrons que B = C.

- Soit $x \in B$. Montrons que $x \in C$.
 - \star Si $x \notin A$, alors $x \in B \setminus A$ donc $x \in A \Delta B$. Ainsi, $x \in A \Delta C$. En particulier, $x \in A \setminus C$ ou $x \in C \setminus A$. Cependant, $x \notin A$, donc $x \notin A \setminus C$. On en déduit que $x \in C \setminus A$. En particulier, $x \in C$.
 - * Si $x \in A$, alors $x \in A \cap B$. En particulier, $x \notin (A \cup B) \setminus (A \cap B)$, donc $x \notin A \Delta B$. D'où $x \notin A \Delta C$. Dans ce cas, $x \in \overline{A \Delta C}$, ce qui se réécrit :

$$x \in \overline{\left(A \cap \overline{C}\right) \cup \left(C \cap \overline{A}\right)}$$

$$\iff x \in \overline{\left(A \cap \overline{C}\right)} \cap \overline{\left(C \cap \overline{A}\right)}$$

$$\iff x \in \overline{\left(\overline{A} \cup C\right)} \cap \overline{\left(\overline{C} \cup A\right)}$$

En particulier, $x \in \overline{A} \cup C$, donc $x \in \overline{A}$ ou $x \in C$. Or, on sait que $x \in A$, donc $x \notin \overline{A}$. Il s'en suit que $x \in C$.

En définitive, $B \subset C$.

• B et C jouant des rôles symétriques, on montrerait de la même manière que $C \subset B$.

Subséquemment, B = C.

6) L'ensemble A étant fixé, déterminer un ensemble B_0 tel que $A\Delta B_0 = \emptyset$. En déduire tous les sous-ensembles X de E qui vérifient $A\Delta X = \emptyset$.

(2 points pour avoir trouvé B_0 et l'avoir justifié, 3 points pour avoir justifié que $X = B_0$ est la seule solution).

On remarque que $A\Delta A = (A \cup A) \setminus (A \cap A) = \emptyset$. Donc $B_0 = A$ convient.

Cherchons tous les $X \in \mathscr{P}(E)$ tels que $A\Delta X = \varnothing$. On raisonne par analyse-synthèse.

• Soit $X \in \mathscr{P}(E)$ qui vérifie $A\Delta X = \varnothing$. On a en particulier

$$A\Delta X = A\Delta B_0$$

donc par la question 5), on en déduit que $X = B_0$.

 \bullet Par ailleurs, B_0 est bien solution par ce qui précède.

Finalement, la seule solution de $A\Delta X = \emptyset$ est $B_0 : S = \{A\}$

7) L'ensemble A étant fixé, déterminer un ensemble B_1 tel que $A\Delta B_1=E$. En déduire tous les sous-ensembles X de E qui vérifient $A\Delta X=E$.

(Idem que ci-dessus).

/5

On remarque que $A\Delta \overline{A} = (A \cup \overline{A}) \setminus (A \cap \overline{A}) = E \setminus \emptyset = E$. Donc $B_1 = \overline{A}$ convient.

En faisant le même raisonnement qu'à la question précédente, on en déduit que \overline{A} est l'unique solution de $A\Delta X=E$. Ainsi, $\boxed{\mathcal{S}=\{\overline{A}\}}$.

/12 8) Montrer que : $\forall A, C \in \mathscr{P}(E) \quad \exists ! B \in \mathscr{P}(E) \quad A \Delta B = C$.

Soit $A, C \in \mathscr{P}(E)$. On pose $B = A\Delta C = (C \setminus A) \cup (A \setminus C)$, ou encore, ce qui revient au même : $B = (C \cap \overline{A}) \cup (A \cap \overline{C})$. Calculons

$$A\Delta B = (\overline{A} \cap B) \cup (A \cap \overline{B})$$

Dans un premier temps:

$$\overline{A} \cap B = \overline{A} \cap \left(\left(C \cap \overline{A} \right) \cup \left(A \cap \overline{C} \right) \right)$$

$$= \left[\overline{A} \cap \left(C \cap \overline{A} \right) \right] \cup \left[\overline{A} \cap \left(A \cap \overline{C} \right) \right]$$

$$= \left(\overline{A} \cap \overline{A} \cap C \right) \cup \left(\overline{A} \cap A \cap \overline{C} \right)$$

$$= \left(\overline{A} \cap C \right) \cup \emptyset$$

$$= \overline{A} \cap C$$

D'autre part :

$$A \cap \overline{B} = A \cap \overline{(C \cap \overline{A}) \cup (A \cap \overline{C})}$$

$$= A \cap \overline{(C \cap \overline{A})} \cap \overline{(A \cap \overline{C})}$$

$$= A \cap (\overline{C} \cup A) \cap (\overline{A} \cup C)$$

$$= [A \cap (\overline{A} \cup C)] \cap (\overline{C} \cup A)$$

(par commutativité et associativité de l'intersection). Ainsi :

$$\begin{split} A \cap \overline{B} &= \left[\left(A \cap \overline{A} \right) \cup \left(A \cap C \right) \right] \cap \left(\overline{C} \cup A \right) \\ &= \left[\varnothing \cup \left(A \cap C \right) \right] \cap \left(\overline{C} \cup A \right) \\ &= \left(A \cap C \right) \cap \left(\overline{C} \cup A \right) \\ &= A \cap \left[C \cap \left(\overline{C} \cup A \right) \right] \\ &= A \cap \left[\left(C \cap \overline{C} \right) \cup \left(C \cap A \right) \right] \\ &= A \cap \left[\varnothing \cup \left(C \cap A \right) \right] \\ &= A \cap \left(C \cap A \right) \\ &= A \cap A \cap C \\ &= A \cap C \end{split}$$

Finalement,

$$A\Delta B = (A \cap \overline{B}) \cup (\overline{A} \cap B)$$
$$= (A \cap C) \cup (\overline{A} \cap C)$$
$$= (A \cup \overline{A}) \cap C$$
$$= E \cap C = \overline{C}$$

Montrons enfin qu'un tel ensemble B est unique. En effet, si $B' \in \mathcal{P}(E)$ est un ensemble qui vérifie $A\Delta B' = C$, alors en particulier $A\Delta B = A\Delta B'$, donc B = B' par la question 5).

9) Avec $E = \mathbb{N}$, montrer que: $\exists A, B, C \in \mathscr{P}(E)$ $A \cup (B\Delta C) \neq (A \cup B) \Delta (A \cup C)$.

On pose $A = \{0\}$ et $B = C = \emptyset$. Puisque

$$\varnothing \Delta \varnothing = (\varnothing \cup \varnothing) \setminus (\varnothing \cap \varnothing) = \varnothing$$

On en déduit :

/5

$$A \cup (B\Delta C) = A \cup \varnothing = A$$

Cependant,

$$(A \cup B)\Delta(A \cup C) = A\Delta A$$

= $(A \cup A) \setminus (A \cap A)$
= $A \setminus A = \emptyset$

On a donc bien $A \cup (B\Delta C) \neq (A \cup B)\Delta(A \cup C)$.